

Compressed	Python:	
A summary-rundown for techs with no time
 - Tristan Mendoza - Jan 06, 2025

Data Types 1
Operators 2
Workspace setup 3
Comprehensions and generators 6
Functions and methods for iterables 10
Handling strings 12
Functions 15
Classes 20
LEGB and scope resolution 24
Lambda functions 25
Closures and decorators 27
Property() decorator and descriptors 31
Built-in functions and __dunder__methods 34
Useful utility modules 38

Python Data Types Overview
Type Bracket Example Update Access Quick definition
Lists square [2, 3, "a"] mutable sequence Ordered list, mixed types, duplicates allowed
Tuple parens (2, 3, "a") immutable sequence Ordered: hold constants, is hashable
Sets curlies {'b', 3, 'h'} both direct Mixed bag (unordered)
Dicts curlies {"a":1, "b":2} mutable mapping Key-value pairs, (unordered)

Type Declaration Type check Display example Casting notes
List list_a = [1, 2, 3] type(list_a) → list list_a → [1, 2, 3] From any iterable (tuple or set)
Tuple tuple_a = (4, 5, 6) type(tuple_a) → tuple tuple_a → (4, 5, 6) From any iterable (list or set)
Set set_a = {7, 8, 9} type(set_a) → set set_a → {7, 8, 9} Any iterable (list or set), zaps duplicates
Dict dict_a = {0: "a", 1: "b"} type(dict_a) → dict dict_a → {0: 'a', 1: 'b'} Needs an iterable of key-value pairs

Creating a new empty set (all other types are straightforward):
 >>> tester1=(). # makes empty tuple
 >>> tester2={}. # makes empty dict
 >>> tester3= set()

 >>> type(tester3)
<class 'set'>

Sequence operations +, * [,] work with tuples, lists and strings
The + operator creates a new tuple as the concatenation of the arguments
>>> ("chapter",8) + ("strings","tuples","lists")
('chapter', 8, 'strings', 'tuples', 'lists')

The * operator between a tuple and a number creates a new tuple with repetitions of the input tuple.
>>> 2*(3,"blind","mice")
(3, 'blind', 'mice', 3, 'blind', 'mice')

The simple [] operator selects an item or a slice

Get an item out
Use list1[index] to refer to a single item. with items are numbered from 0 onward.
A negative index starts counting from the end backwards (so -1 is the last item)
>>> listA=[10,20,30,40,50,60]
>>> listA[0] - returns 10
>>> listA[-1] - returns 60

Splitting and slicing (for lists, tuples, strings)
To split a sequence in two at any index x: my_list[:x] and my_list[x:]
>>> listA[:2] # split up to 2 - returns [10, 20]
>>> listA[2:] # split starting from 2 - returns [30, 40, 50, 60]

Strides: slicing based on intervals (for lists, tuples, strings)
The form s[a:b:c] can be used to specify a stride or step c, causing the resulting slice to skip items.
The stride can also be negative, returning items in reverse.
>>> s = 'bicycle'
>>> s[::3] - returns 'bye'
>>> s[::-1] - returns 'elcycib'
>>> s[::-2] - returns 'eccb'

>>> a_string = 'My alphabet starts where your alphabet ends.'
>>> a_string[3:11] ----- 3rd to 11th chars
'alphabet'
>>> a_string[3:-3] ----- 3rd char to 3rd before end
'alphabet starts where your alphabet en'
>>> a_string[0:2] ----- Begins at 0, up to but not including 2 (a space)
'My'
>>> a_string[:18] ----- Implied beginning of string [:n] is the first n characters
'My alphabet starts'
>>> a_string[18:] ----- Implied end of string [n:] is n till the end
' where your alphabet ends.'

Python expression operators
Operator Description
x + y Addition: Adds two values.
x - y Subtraction: Subtracts one value from another.
x * y Multiplication: Multiplies two values.
x / y Division: Divides one value by another (float division).
x // y Floor Division: Divides and truncates to the nearest integer.
x % y Modulo: Returns the remainder of the division.
x ** y Exponentiation: Raises x to the power of y.
x | y Union: Combines elements (e.g., sets: `{1, 2} | {2, 3} → {1, 2, 3}`).
x & y Intersection: Common elements (e.g., sets: `{1, 2} & {2, 3} → {2}`).
x - y Difference: Elements in x but not in y (e.g., `{1, 2, 3} - {2} → {1, 3}`).
x ^ y Symmetric Difference: Elements in either x or y but not both (e.g., `{1, 2} ^ {2, 3} → {1, 3}`).
x < y Less than: True if x is less than y.
x > y Greater than: True if x is greater than y.
x <= y Less than or equal to: True if x is less than or equal to y.
x >= y Greater than or equal to: True if x is greater than or equal to y.
x == y Equality: True if x is equal to y.
x != y Inequality: True if x is not equal to y.
x and y Logical AND: True if both x and y are True.
x or y Logical OR: True if either x or y is True.
not x Logical NOT: True if x is False.
x if cond else y Ternary conditional: Returns x if condition is True, otherwise returns y.
x << y Left Shift: Shifts bits of x left by y places.
x >> y Right Shift: Shifts bits of x right by y places.
x & y Bitwise AND: Performs AND operation on bits.
x | y Bitwise OR: Performs OR operation on bits.
x ^ y Bitwise XOR: Performs XOR operation on bits.
~x Bitwise NOT: Inverts the bits of x.
x in y Membership: True if x is in y.
x not in y Non-membership: True if x is not in y.
x is y Identity: True if x and y reference the same object.
x is not y Non-identity: True if x and y do not reference the same object.

The Walrus Operator
In Python 3.8+ the walrus operator := was introduced to assign values to variables as part of an expression (which is then called
an assignment expression). Combining variable assignment and usage in one place is more efficient and readable.

Example:
if (n := len(my_list)) > 5:
 print(f"The list is too long: {n} elements.")

Reduced Redundancy: Avoid recalculating values unnecessarily.
Without walrus operator
n = len(my_list)
if n > 5:
 print(f"The list is too long: {n} elements.")

With walrus operator
if (n := len(my_list)) > 5:
 print(f"The list is too long: {n} elements.")

Flexible Contexts: Use in loops, comprehensions, and function arguments.
Loop example
while (line := input("Enter text: ")) != "quit":
 print(f"You entered: {line}")

Comprehension examples
filtered = [y for x in data if (y := process(x)) > 0]
#
positive_numbers = [num for num in data if (squared := num**2) > 100]

Can't be used outside of an expression since it's not expressly where it was designed to be used.
Great for where a value is needed both for conditional checks and further ops, keeping code readable, but succinct

Virtual environments for projects - Setting up your workspace
A virtual environment is a lightweight Python installation with its own package directories and a Python binary copied (or linked)
create it, with advantages of ensuring integrity and making sure installed packages don’t collide.

Recommended: create a main directory where you keep all the project environments.
Placing this directory in your project tree has efficiency issues.

virtualenv is classic - can be used with Python 2 and 3
pyvenv was designed for Python3- it's a wrapper around venv module and is now deprecated (in 3.6).
On Python >= 3.3 use venv module directly (virtualenv is still there)

Use the following to create a virtual environment called my_env1 depending on version:
$ virtualenv envs/my_env1 # in Python 2
$ python3 -m venv envs/my_env1 # Python 3 to create, then activate it to work in it
$ source envs/my_env/bin/activate # Prompt changes to show you're in your env
(your_env) $

The last part of running the activate script is more convenient than changing the $PATH.
Now pip and python commands are localized
Using pip without having to sudo ensures you don't escalate privileges of things it installs
Your modules/packages from various projects won't contaminate each other or conflict.

If you haven't activated the environment you can still work within the environment running commands and scripts
$ /home/user5/envs/my_env/bin/python myscript.py
$ /home/user5/envs/my_env/bin/pip

For venv and virtualenv, the only other really useful command is deactivate. Verbose for anything is -v. There is one special option
that needs mentioning. It might be a pain to install a big list of packages that are already on the host system, and you can get it
use the host system's stuff with "python3 -m venv --system-site-packages envs/my_env", just don't do it. It will mess things up in
production, your environment won't contain those packages- it will put you in a world of hurt. Just don't. I'm reading a advanced
Python book that mentions this option without pointing out how stupid it is.

You need to specify the Python version (interpreter) for a project?
$ python3.8 -m venv envs/your_env
$ virtualenv -p python3.8 envs/your_env

You could do this but having multiple installs of Python on your host OS can be problematic and gets "old fast".
Installing pyenv is a remedy for this [https://github.com/pyenv/pyenv-installer]
Enable it's virtualenv functionality with pyenv- virtualenv [https://github.com/pyenv/pyenv-virtualenv]
As seen below, it grabs the versions you tell it and puts them in your home directory to use when necessary

$ pyenv install --list # Nice big list to choose from
$ pyenv install --list | grep 3.3 # Where's the one I need?
$ pyenv install 3.3 # Make it so!
---- > Installed Python-3.3 to /home/user5/.pyenv/versions/3.3

So now, with the virtualenv functionality built you just do this:
$ pyenv virtualenv 3.3 /envs/my_env
$ pyenv activate my_pyenv

Commands for pyenv-virtualenv
Install or uninstall a specific Python version pyenv install (uninstall) version
List all available Python versions pyenv install --list
Show current Python version pyenv version
List all installed Python versions pyenv versions
Rebuild the shim cache pyenv rehash
Check for and apply updates to pyenv pyenv update
Check for missing dependencies pyenv doctor
Install with a patch pyenv install --patch version
Create a virtual environment pyenv virtualenv version env_name
List all virtual environments pyenv virtualenvs
Activate a virtual environment pyenv activate env_name
Deactivate the current virtual environment pyenv deactivate
Delete a virtual environment pyenv uninstall env_name
Find the location of a Python executable pyenv which command_name
Run commands with a specific Python version pyenv exec command
Show environment variables for a version pyenv exec

Using PIP for package management
With both install and upgrade, <pkg_name>==<version> can be specified

Install package(s) Package name can be a URL or local file pip install <pkg_name1>, <pkg_name2>
Install a specific version pip install <pkg_name>==<version>
Install packages listed in file (use with pip freeze) pip install -r requirements.txt
Upgrade a package pip install --upgrade <pkg_name> (OR use -r requirements.txt)
Install package without its dependencies pip install --no-deps <pkg_name>
Search for packages pip search <search_term>
Download the package without installing it pip download <pkg_name>
Get info about a package pip show <pkg_name>
Generate requirements.txt listing installed packages pip freeze > requirements.txt
List all installed packages (add -o for outdated pkgs) pip list
Check for security issues, dependency problems pip check OR pip verify
Show the dependency tree of installed packages pipdeptree
Upgrade the pip installation itself pip install --upgrade pip
Configure proxy and cache settings for pip pip config
Create a wheel package for distribution pip wheel <package_directory>

Using pipenv for managing virtual environments
A way of managing simpler projects is by using pipenv. For larger projects with development teams, poetry is better suited. By
going into your project's directory and running 'pipenv install' pipenv will look at the location specified where store your
environment files, match it to the directory of the project you are working in using hash mapping (of the directory)

- The default location fo where pipenv puts it's env directory is ~/.local/share/virtualenvs
- To set a preferred location for the virtual environment files, set the WORKON_HOME environment variable

export WORKON_HOME=/path/to/my/custom/virtualenvs
- Use can use pipenv --venv to verify which virtual environment is associated with the current project directory
- After running 'pipenv install package-name>' in your project's directory, pipenv will create a pipfile and pifile.lock there.

Create virtual environment, install packages from Pipfile pipenv install
Activate the virtual environment pipenv shell
Install a package in the virtual environment pipenv install <pkg_name>
Uninstall a package from the virtual environment pipenv uninstall <pkg_name>
Generate a Pipfile.lock file with package versions pipenv lock
Get more options to use pipenv --help

Anaconda/conda packages
Anaconda/Conda is focused primarily on data science and machine learning packages and managing virtual environments, yet is
now considered a bit sluggish and heavy on system resources. Mamba/MicroMamba is a faster solution for accessing the same
repositories. Both have functionality for managing virtual environments, yet either pipenv or Poetry are much better for doing such
things. Since we need something to access these repos for the packages that are offered (pip can't) , MicroMamaba is currently
the best option. Most of the commands for conda and Mamba are the same as illustrated below.

Task Conda Command Mamba Command
Install a specific package conda install <pkg_name> mamba install <pkg_name>
Install multiple packages conda install pkg1 pkg2 mamba install pkg1 pkg2
Install a specific version conda install <pkg_name>=version mamba install <pkg_name>=version
Install from a specific channel conda install -c channel_name pkg mamba install -c channel_name pkg
Install packages from a file conda install --file file.txt mamba install --file file.txt
Install without dependency checks conda install <pkg_name> --no-deps mamba install <pkg_name> --no-deps
Install into a specific prefix conda install --prefix /path pkg mamba install --prefix /path pkg
Dry-run installation conda install <pkg_name> --dry-run mamba install <pkg_name> --dry-run
Update a specific package conda update <pkg_name> mamba update <pkg_name>
Update all packages conda update --all mamba update --all
Remove a package conda remove <pkg_name> mamba remove <pkg_name>
Force remove a package conda remove --force <pkg_name> mamba remove --force <pkg_name>
List installed packages conda list mamba list
Export list of installed packages conda list --export > file.txt mamba list --export > file.txt
Check outdated packages conda list --outdated mamba list --outdated
Search for a package conda search <pkg_name> mamba search <pkg_name>
Check package details conda search <pkg_name> --info mamba search <pkg_name> --info
Query repository for dependencies conda search <pkg_name> mamba repoquery depends <pkg_name>
Find reverse dependencies Not available mamba repoquery whoneeds <pkg_name>
Clean unused cache/files conda clean --all mamba clean --all

Poetry for creating, updating, and sharing projects (including package management)
 - Running "poetry init" asks a few questions to form a pyproject.toml - autofills the author name and email from the current
user's git config (you can of course change it), package name, version, description, and prefered Python version to associate with.
Your asked if you want to interactively define dependences and confirm to finish up.
 - The common modern replacement for setup.py are *.toml files (Tom's Obvious Minimal Language)
 - To enter the activated virtual environment when using poetry, you can simply type 'poetry shell'.
 - When making an entry for a cron job inside an environment you would have to first have the command line change directory to
the project, then issue a 'poetry run' command from that location.

When it finishes you add dependencies with 'poetry add <needed_package>', (name only is fine) and it will report it's installing
(meaning it is adding it to the TOML file) and creates a lock file, which has more specific package info, the exact version the hash
it should match, and the dependencies it needs. The idea of all of this is you can take these files to another system and run
'poetry install' and it will rebuild it for you in a virtual environment automatically. It also serves as a point of reference for upgrades.
When you use 'poetry update' it will automatically check dependencies with versions of other items in the TOML to ensure
compatibility.

- The default location poetry places and looks for virtual environment files is ~/.cache/pypoetry/virtualenvs
- Change this with 'export POETRY_VIRTUALENVS_PATH=/path/to/my/custom/virtualenvs"
- Verify this when needed with 'poetry env info --path'

Poetry Commands
Project Management Commands

Create a new Poetry project poetry new project_name
Initialize a project in the current directory poetry init
Display Poetry version poetry --version
Check current project dependencies poetry check
Build a project package poetry build

Virtual Environment Management Commands
Create a virtual environment Automatically handled by poetry install
List Poetry-managed virtual environments poetry env list
Use a specific Python version poetry env use python_version
Remove a virtual environment poetry env remove python_version
Activate the virtual environment poetry shell
Deactivate the virtual environment exit (from within the shell)
Check virtual environment path poetry env info --path

Package Management Commands
Install dependencies poetry install
Add a new package poetry add <pkg_name>
Add a package with specific version poetry add <pkg_name>@version
Add a dev dependency poetry add <pkg_name> --group dev
Remove a package poetry remove <pkg_name>
Update all packages poetry update
Update a specific package poetry update <pkg_name>
Check for outdated dependencies poetry show --outdated
Show installed packages poetry show
Search for a package poetry search <pkg_name>
Lock dependencies poetry lock
Export dependencies to requirements.txt poetry export -f requirements.txt --output requirements.txt

Scripts and Execution Commands
Run a command in the virtual environment poetry run command
Run a defined script poetry run script_name
List defined scripts poetry run --list
Execute shell in the virtual environment poetry shell

Publishing Commands
Publish a package to a repository poetry publish
Publish to a specific repository poetry publish --repository repo_name
Build and publish in one command poetry publish --build

Configuration Commands
Set a configuration value poetry config key value
View all configuration values poetry config --list
Unset a configuration value poetry config --unset key
Use local configuration poetry config --local key value
Use global configuration poetry config --global key value

List comprehensions
List comprehensions offer a concise syntax for generating lists. They allow for loops and optional conditions in a single line
List comprehensions load the entire list into memory. For large datasets, generator expressions may be more efficient.
Basic syntax
result = [x+1 for x in some_sequence]
Equivalent to:
result = []
for x in some_sequence:
 result.append(x + 1)

With conditional:
result = [x + 1 for x in some_sequence if x > 23]
Equivalent to:
result = []
for x in some_sequence:
 if x > 23:
 result.append(x + 1)

Nested loops (flattening a list of lists):
result = [x for sublist in list_of_lists for x in sublist]
Equivalent to:
result = []
for sublist in list_of_lists:
 for x in sublist:
 result.append(x)

Example use cases:
[i for i in range(6)] # [0, 1, 2, 3, 4, 5] - simple range
[i * 2 for i in range(6)] # [0, 2, 4, 6, 8, 10] - transform values
[i for i in range(6) if i % 2 == 0] # [0, 2, 4] - only even numbers
[i * 3 for i in range(6) if i % 2 == 0] # [0, 6, 12, 18, 24] - even numbers transformed

Set comprehensions
Set comprehensions for creating sets- similar to list comprehensions but use braces {} instead of brackets []
Basic Syntax

Expression defines values; iterable is source of values to process; optional condition filters values included in the set
s = {expression for item in iterable if condition}

Example: Unique values from a transformation
Divides each number in range 0-9 by 2, keeping only unique results as a set; sorted() used to display set as a sorted list

s = {x // 2 for x in range(10)}
print(sorted(s)) # Output: [0, 1, 2, 3, 4]

Example: Squares of numbers
Computes the square of each number in the range 0-9 and stores the unique results in a set.

squares = {x**2 for x in range(10)}
print(squares) # Output: {0, 1, 4, 9, 16, 25, 36, 49, 64, 81}

Example: Filtering even numbers
Filters the range 0-9 to include only even numbers in the set.

evens = {x for x in range(10) if x % 2 == 0}
print(evens) # Output: {0, 2, 4, 6, 8}

Example: Powers of two
Generates powers of 2 from 2^0 to 2^9 and stores them in a set.

powers_of_two = {2**x for x in range(10)}
print(powers_of_two) # Output: {1, 2, 4, 8, 16, 32, 64, 128, 256, 512}

Dictionary Comprehensions
Similar to list comprehensions but with key-value pairs derived from iterables, a concise way to make dictionaries.

Basic Syntax:
d = {key: value for key, value in some_iterable}

Basic key-value mapping:
squares = {n: n * n for n in range(5)}
print(squares) # Output: {0: 0, 1: 1, 2: 4, 3: 9, 4: 16}

File metadata dictionary:
import os, glob
metadata_dict = {f: os.stat(f) for f in glob.glob('*test*.py')}
print(metadata_dict) # Output: { 'test1.py': os.stat_result(...), 'test2.py': os.stat_result(...) }

Filtered comprehension:
even_squares = {n: n * n for n in range(10) if n % 2 == 0}
print(even_squares) # Output: {0: 0, 2: 4, 4: 16, 6: 36, 8: 64}

Using a conditional to determine both keys and values:
parity = {n: 'even' if n % 2 == 0 else 'odd' for n in range(5)}
print(parity) # Output: {0: 'even', 1: 'odd', 2: 'even', 3: 'odd', 4: 'even'}

Handling nested dictionaries or lists:
nested_dict = {x: {y: x * y for y in range(3)} for x in range(3)}
print(nested_dict) # Output: {0: {0: 0, 1: 0, 2: 0}, 1: {0: 0, 1: 1, 2: 2}, 2: {0: 0, 1: 2, 2: 4}}

Generators
Generators are a special type of iterable that allow lazy evaluation. Using the yield keyword, they produce items one at a time,
pausing execution between each item while retaining their state. This makes them memory-efficient, especially for handling large
or infinite datasets. They do not store the entire sequence in memory and rely on the next() function to resume execution until the
next yield.

Example with yield
def count_up_to(n):
 for i in range(1, n + 1):
 yield i

counter = count_up_to(5)
print(list(counter)) # Output: [1, 2, 3, 4, 5]

Passing Values to Generators
Starting with Python 3.x, yield can accept values via send and return values when the generator terminates

def echo():
 while True:
 value = (yield) # Receives value from g.send()
 print(f"Received: {value}")

g = echo()
next(g) # Prime the generator to reach the first yield
g.send("hello") # Sends "hello" to the generator - Output is: Received: hello

yield from
The yield from statement (introduced in Python 3.3) delegates operations to the subiterable, automatically handling iteration and
passing results back to the caller.

def combined_generator():
 yield from range(1, 4) # Delegates to range(1, 4)
 yield from "abc" # Delegates to string "abc"
 yield from [10, 20, 30] # Delegates to a list

for item in combined_generator():
 print(item, end=" ")
Output: 1 2 3 a b c 10 20 30

Example: Iterating using generators in loops
Generators integrate seamlessly with for loops, which automatically handle StopIteration when the generator is exhausted.

def reverse_string(my_str):
 for i in range(len(my_str) - 1, -1, -1):
 yield my_str[i]

Reverse a string using a generator
for char in reverse_string("Python"):
 print(char, end=" ") # Output: n o h t y P

Example: Representing huge data streams
Generators handle infinite or large datasets efficiently by producing items on demand, minimizing memory usage.

def all_even():
 n = 0
 while True:
 yield n
 n += 2

even_numbers = all_even()
print(next(even_numbers)) # Output: 0
print(next(even_numbers)) # Output: 2

Example: Pipelining generators
Generators can be used together in a pipeline to perform sequential operations. For example, one generator can produce
numbers while another processes them, enabling efficient data processing.

def fibonacci_numbers(nums):
 x, y = 0, 1
 for _ in range(nums):
 x, y = y, x + y
 yield x

def square(nums):
 for num in nums:
 yield num**2
Sum of squares of Fibonacci numbers
print(sum(square(fibonacci_numbers(10)))) # Output: 4895

Generator expressions
Generator expressions are similar to list comprehensions but use parentheses () instead of brackets []. They produce an iterator,
yielding items one by one, making them more memory-efficient for large datasets.

Basic syntax
gen_exp = (x * x for x in range(10))

Example: Generator expressions as function arguments
When a generator expression is passed directly as a function argument, parentheses can be omitted for simplicity
my_list = [1, 3, 6, 10]
print(sum(x**2 for x in my_list)) # Output: 146
print(max(x**2 for x in my_list)) # Output: 100

Example: Calculate the sum of squares of single-digit integers
sum(x * x for x in range(10))
Output: 285

Example: Filter and process values lazily
evens_squared = (x * x for x in range(10) if x % 2 == 0)
print(list(evens_squared)) # Output: [0, 4, 16, 36, 64]

Example: Nested generator expressions
Nested generator expressions combine multiple iterables into a single, memory-efficient iterator
nested = (x * y for x in range(3) for y in range(3, 6))
print(list(nested)) # Output: [0, 0, 0, 3, 4, 5, 6, 8, 10]

Generators and exceptions
Generators can handle exceptions, ensuring proper cleanup and enabling fine-grained control.

Example: Using yield in try/finally:
def safe_generator():
 try:
 yield "Working"
 finally:
 print("Cleanup")

g = safe_generator()
print(next(g))
g.close() # Output: Working... Cleanup...

Exception injection with throw
def generator_with_error():
 try:
 yield "Before exception"
 except ValueError:
 yield "Handled exception"
g = generator_with_error()
print(next(g))
print(g.throw(ValueError))
 # Output: Before exception... Handled exception

Example: Graceful termination with close()
The close() method terminates a generator and ensures cleanup of resources

def managed_gen():
 try:
 yield "Start..."
 finally:
 print("Cleanup complete")

g = managed_gen()
print(next(g)) # Output: Start...
g.close() # Output: Cleanup complete

Example: Using __del__ for cleanup
If a generator is embedded in a class, __del__ can finalize the generator when the instance is garbage-collected

class FinalizedGenerator:
 def __init__(self):
 self.gen = self._generator()

 def _generator(self):
 try:
 yield "Running"
 finally:
 print("Finalized and cleaned up")

 def __del__(self):
 self.gen.close()

gen_instance = FinalizedGenerator()
print(next(gen_instance.gen)) # Output: Running

Cleanup occurs when gen_instance is garbage-collected.

On StopIteration
Left out of this is StopIteration, which is raised automatically when a generator is exhausted, signals the end of iteration. Explicit
handling is rarely required in Python.

List Built-in Functions
The following functions apply to all sequences, including tuples and strings.
len(object) - Return the number of items of a sequence or mapping.
max(list) and min(list) - Return the largest or smallest item in the sequence.
any(tuple) - Return True if there is an item in the sequence which is True.
all(tuple) - Return True if all items in the sequence are True.
range([start], stop [, step]) - Works the same as the [] operator. Start and step are optional.

List Methods
Unless immutable (like tuples), most of these work with the other object-container types

P.append(object) Appending one object to end of P
P.extend(list) Appending multiple lists elements to end of P
P.insert(index, object) Insert before position index
P.pop(index) Remove and return item at index (default last, -1) An empty list returns exception
P.remove(value) Remove first occurrence of value from P. If not in the list returns exception
P.clear() Removes all elements from the list, leaving it empty.
P.copy() Creates a shallow copy of list, duplicating elements but not references for nested structures
P.reverse() Reverse the items in list. Done "in place" does not create new list (get copy of result)
P.sort (key=function) Custom sorting-use reverse=true to order descending

Done "in place" does NOT create new list (make a copy of result)
Accessor methods
P.count (value) Return number of occurrences of value in list P
P.index (value) Return index of first occurrence of value in list P

Simulating List Methods on Tuples
Append, extend, remove, pop aren't applicable to tuples, since tuples are designed to be immutable.
If you need to perform similar functions, here are some work-arounds:

To append tuple with an object, a trailing comma makes object a tuple, to be concatenated (same way you extend the tuple):
>>> n_tuple=(1,2,3,4)
>>> n_tuple + (5)
Traceback (most recent call last):
 File "<pyshell#30>", line 1, in <module>
 n_tuple + (5)
TypeError: can only concatenate tuple (not "int") to tuple
>>> n_tuple + (5,)
(1, 2, 3, 4, 5)

Remove and pop: You can't subtract from a tuple but you can update it with a slice of itself:
>>> n_tuple - (5)
Traceback (most recent call last):
 File "<pyshell#33>", line 1, in <module>
 n_tuple - (5)
TypeError: unsupported operand type(s) for -: 'tuple' and 'int'
>>> n_tuple = n_tuple[:4]
>>> n_tuple
(1, 2, 3, 4)

Set methods
Since sets aren't ordered, methods mentioned above act slightly different

set1.pop() Remove an arbitrary object, returning it. If empty, raises a KeyError exception.
set1.add(new) Adds element new to the set. If the object is already in the set, nothing happens.
set1.remove(old) Removes element 'old'. If not in the set, will raise a KeyError exception.
set1.discard(old) Removes element 'old'. If not in the set, nothing happens
set1.clear() Remove all items from the set.
set1.frozenset() Creates an immutable version of a set
set1.copy() Copy set to make a shallow copy. Objects in new set reference same objects in original
set1.update(new) Merge values, new set into original set, adding elements as needed. Like set1 |= new
set1.intersection_update Update set1 to have the intersection of set1 and new. Discards elements from set1,

keeping only those common to new and set1. It is equivalent to typing set1 &= new.
set1.isdisjoint() Returns True if two sets have no elements in common (i.e., they are disjointed)
set1.difference_update Update set1 to have the difference of set1 and new. In effect, this discards elements

from set1 which are also in new . It is equivalent to set1 -= new.
set1.symmetric_difference_update Update set1, symmetric difference between set1 and new. Discards elements from set1

which are common with new and also inserts elements into set1 which are unique to
new . It is equivalent to set1 ^= new.

Accessor methods
set1.issubset(set) If set1 is a subset of set , return True, otherwise False. Essentially, this is set1 <= set.
set1.issuperset(set) If set1 is a superset of set , return True, otherwise False. Essentially, this is set1 >= set
set1.union(new)
>>> prime.union((1, 2, 3, 4, 5))
set([1, 2, 3, 4, 5, 7, 11, 13])

Return set1 | new. If new is a sequence or other iterable, make a new set from the
value of new, then return the union, set1 | new. This does not update set1

set1.intersection Return string1 & new. If new is a sequence or other iterable, make new set from the
value of new, then return the intersection, set1 & new. Does not update set1

set1.difference Return set1 - new. If new is a sequence or other iterable, make a new set from the
value of new , then return the difference, set1 - new. This does not update set1

set1.symmetric_difference Return set1 ^ new. If new is a sequence or other iterable, make new set from the value
of new, then return the symmetric difference, set1 ^ new. Does not update set1

Dictionary Built-in Functions
len(object) - Return the number of items of a sequence or mapping.
dict(valList) - Each element of the list must be a 2-element tuple; create a dict with the first element as the key and the second
element as the value. Note that the zip function produces a list of 2-tuples from two parallel lists.
 >>> dict([('first',0), ('second',1), ('third',2)])
 {'second': 1, 'third': 2, 'first': 0}
 >>> dict(zip(['fourth','fifth','sixth'],[3,4,5]))
 {'sixth': 5, 'fifth': 4, 'fourth': 3}

Dictionary Methods
dict1.clear() Remove all items from the dict.
dict1.copy() Copy to make a new dict. Shallow copy: all references to same objects in original
dict1.setdefault (key [, default]) Get value of key, but also sets a default value
dict1.update(new [, default]) Merge values from new into the original, adding or replacing as needed. It is

equivalent to "for k in new.keys(): d[k]= new[k]"
dict1.pop(key [, value]) Remove key, returning the associated value. If the key does not exist, return the

optional value provided in the pop call.
dict1.get(key [, default]) Get item with key, like dict1[key]. If key is not present, supply default instead.
dict1.has_key(key) Obsolete in Python 3.x. Use key in dict1 instead
dict1.items() Return all items in the dict as a sequence of (key,value) tuples in no particular order
dict1.keys() Return all of the keys in the dict as a sequence of keys (in no particular order)
dict1.values() Return all the values from the dict as a sequence (returned in no particular order)

String Built-in Functions
chr(i) - Return a string of one character with ordinal i; 0 ≤ i < 256.
len(object) - Return the number of items of a sequence or mapping.
ord(c) - Return the integer ordinal of a one character string
str(object) - Return string representation of the object. If it IS a string, the return value is the same object.
unichr(i) and unicode(string [, encoding,] [errors]) These have been deprecated- use chr() instead
repr(object) - Returns a string representation of an object suitable for debugging, including escape sequences and types when
applicable. Can be used within f-strings to display the debug representation of variables, for example: f'{variable!r}'.

String transformation functions (create a new string from an existing string).
string1.capitalize() Make copy with first character capitalized.
string1.center(width) Make copy of the string centered in a string of length 'width' padded with spaces.
string1.encode(encoding [, errors]) Return an encoded string version of string1. Default encoding is the current default

string encoding. errors may be given to set a different error handling scheme. Default is
'strict' meaning that encoding errors raise a ValueError. Other possible values are
'ignore' and 'replace'.

string1.expandtabs([tabsize]) Return a copy of string1 with tab expanded using spaces. If tabsize is not given, a tab
size of 8 characters is assumed.

string1.join(sequence) Return a string which is the concatenation of the strings in the sequence . The
separator between elements is string1

string1.ljust(width) Return string1 left justified in a string of length width. Padding is done using spaces.
string1.lower() Return a copy of string1 in all lowercase.
string1.lstrip() Return a copy of string1 with leading whitespace removed.
string1.replace(old, new [,
maxsplit])

Return a copy of string1 with all occurrences of substring old replaced by new. If the
optional argument maxsplit is given, only the first maxsplit occurrences are replaced.

string1.rjust(width) Return string1 right justified in a string of length width . Padding is done using spaces.
string1.rstrip() Return a copy of string1 with trailing whitespace removed.
string1.strip() Return a copy of string1 with leading and trailing whitespace removed.
string1.swapcase() Return a copy with uppercase characters switched to lowercase and vice versa.
string1.title() Return a titlecased version of string1.

string1.translate() / str.maketrans() str.maketrans() creates a translation table for str.translate() to map or remove
characters.Example: "abc".translate(str.maketrans("a", "b", "c")) replaces a with b and
removes c.

string1.upper() Return a copy of string1 all uppercase.
string1.count(sub [, start] [, end]) Return the number of occurrences of substring sub in string1[start : end]. Optional

arguments start and end are interpreted as in slice notation.
string1.endswith(suffix [, start] [,
end])

Return True if string1 ends with the specified suffix , otherwise return False. With
optional start, or end, test string1[start : end]. The suffix can be a single string or a
sequence of individual strings.

string1.startswith(prefix [, start] [,
end])

Return True if string1 starts with the specified prefix , otherwise return False. With
optional start, or end, test string1[start : end]. The prefix can be a single string or a
sequence of individual strings.

string1.find(sub [, start] [, end]) Return the lowest index in string1 where substring sub is found, such that sub is
contained within string1[start : end]. Optional arguments start and end are interpreted
as in slice notation. Return -1 on failure.

string1.index(sub [, start] [, end]) Like string1.find but raise ValueError when the substring is not found.
string1.isalnum() Return True if all characters in string1 are alphanumeric, False otherwise.
string1.isalpha() Return True if all characters in string1 are alphabetic, False otherwise.
string1.isdigit() Return True if all characters in string1 are digits, False otherwise.
string1.islower() Return True if all characters in string1 are lowercase, False otherwise.
string1.isspace() Return True if all characters in string1 are whitespace, False otherwise.
string1.istitle() Return True if string1 is a titlecased string
string1.isupper() Return True if all characters in string1 are uppercase, False otherwise.
string1.rfind(sub [, start] [, end]) Return the highest index in string1 where substring sub is found, such that sub is

contained within string1[start : end]. Optional arguments start and end are interpreted
as in slice notation. Return -1 on failure.

string1.rindex(sub [, start] [, end]) Like string1.rfind but raise ValueError when the substring is not found.
string1.zfill() Pads a string on the left with zeros to achieve a specified width.
casefold() Returns case-insensitive suitable for Unicode compare (stronger than lower())
isprintable() Checks all characters are printable
removeprefix(prefix) Removes the prefix, if present
removesuffix(suffix) Removes the suffix, if present

 These generators create another kind of object, usually a sequence, from a string
string1.partition(sep)
string1.rpartition()

Return a three-tuple of the text prior to the first occurrence of sep in the string string1, the
sep as the delimiter, and the text after the first occurrence of the separator. If the separator
doesn't occur, all of the input string is in the first element of the 3-tuple; the other two
elements are empty strings.
The str.rpartition() method works like partition but starts splitting from the rightmost
occurrence of the separator

string1.split(sep[, maxsplit]) Return a list of the words in the string string1, using sep as the delimiter string. If maxsplit is
given, at most maxsplit splits are done. If sep is not specified, any whitespace string is a
separator.

string1.splitlines([keepends]) Return a list of the lines in string1, breaking at line boundaries. Line breaks are not included
in the resulting list unless keepends is given and true.

F-Strings and Formatting
I will not be discussing older Python printing methods like % formatting or str.format() since they are increasingly historical.

Basic formatting types
s String format Default for strings
d Decimal Int Comma as number separator
n Number Same as d but use locale setting
e Exponent Scientific notation using letter ‘e’
f Fixed-point Fixed-point; default precision is 6

% Percentage Multiplies by 100, w/ percent sign
x or X Hexadecimal Hexadecimal in lowercase or upper
c Character (self-explanatory)
b Binary (self-explanatory)
o Octal (self-explanatory)

############### General rules on usage, etc.
Using a colon (:) is always required in f-strings when you want to apply any kind of formatting specifier, including width, precision
and alignment specifiers discussed below.

Also found in the following examples is the way f-strings behave with quotes:
Inside of print(), double quotes are usually prefered but single also works. Whichever you pick, that type of quote will need to be
escaped if it appears inside the f-string (like in f"my cat said \"meow\" loudly" or f'my dog\'s hair is brown')

Backslashes \ generally need escaped inside of any f-string blocks unless part of an escape sequence like \n or \t.
Sometimes, if a project's norm is to use one style of f-strings, you may encounter some text that so many quotes inside that using
an alternative f-string style can reduce the need for escaping, making it more efficient for that instance.

Outside print(), single and double quotes can also be used, following the same rules for escaping matching quotes and
backslashes. Blocks like f''' (triple single- or triple double-quotes) are for multiline string literals, and quotes won't need escaping
(although backslashes will).

import math
variable = math.pi
########## Alignment and spacing (25 chars) ##
print(f"|{variable:25}|")
print(f"|{variable:<25}|")
print(f"|{variable:>25}|")
print(f"|{variable:^25}|\n")
Outputs:
| 3.141592653589793 |
| 3.141592653589793 |
| 3.141592653589793 |
| 3.141592653589793 |

Using a fill character #####
print(f"|{variable:=<25}|")
print(f"|{variable:=>25}|")
print(f"|{variable:=^25}|\n")
Outputs:
|3.141592653589793========|
|========3.141592653589793|
|====3.141592653589793====|

Percentage formatting #####
variable = 4
print(f"This prints with percent formatting {variable:%}\n")
Outputs: (use .#% for decimal precision)
This prints with percent formatting 400.000000%

Exponent formatting
variable = 403267890
print(f"This prints with exponential formatting {variable:e}")
Outputs:
This prints with exponential formatting 4.032679e+08

Adding +/- signing
variable = 1200356.8796
print(f"With a forced plus sign: {variable:+.2f}")
variable *= -1 ## Switch sign
print(f"Signing, two decimal places, commas: {variable:,.2f}")
Outputs:
With a forced plus sign: +1200356.88
Signing, two decimal places, commas: -1,200,356.88

Decimals ##
variable = 1200356.8796
print(f"With two decimal places: {variable:.2f}")
print(f"With three decimal places: {variable:.3f}")
print(f"With two decimal places and a comma: {variable:,.2f}")
Outputs
With two decimal places: 1200356.88
With three decimal places: 1200356.880
With two decimal places and a comma: 1,200,356.88

Tabular Data with Fixed Widths ##
print(f'Number\t\tSquare\t\t\tCube')
for x in range(1, 11):
 x = float(x)
 print(f'{x:5.2f}\t\t{x*x:6.2f}\t\t{x*x*x:8.2f}')

5, 6, and 8 character field widths, padded w/ spaces

Printed output below is approximated.
Number Square Cube
 1.00 1.00 1.00
 2.00 4.00 8.00

Expressions and Inline Calculations
These look slightly different - they are as run in a Python shell
aka interactive interpreter which is available in IDLE and other
IDEs

f'''sum: {some_dict['a'] + some_dict['b']}'''
'sum: 579'
##
>>> f'if statement: {a if a > b else b}'
'if statement: 456'
##
>>> f'min: {min(a, b)}'
'min: 123'
##
>>> f'Hi {username}. And in upper: {username.upper()}'
'Hi doug. And in upper: DOUG'

>>> f"Squares: {[x ** 2 for x in range(5)]}"
'Squares: [0, 1, 4, 9, 16]'

Using the str.format() method and string functions
Most of the focus on modern Python printing is on f-strings, considering their ease in usage, but the traditional string methods still
play a big part of doing more with text- specifically string objects

In automatic positional, {} brackets go in order
He knows his {}-{}-{}s.format('A', 'B', 'C') "He knows his A-B-Cs"

Numbered positional arguments :
He knows his {2}-{0}-{1}s.format('B, 'C', 'A') "He knows his A-B-Cs"

Named arguments, defined inline
He knows his {Z}-{Y}-{X}s'.format(Y='B',Z='A',X='C') "He knows his A-B-Cs"

Indexing within Sequences
{0[2]}-{0[1]}-{0[0]}s and {1[1]}-{1[2]}-{1[0]}s.format(('C', 'B', 'A'), (3, 1, 2)) "A-B-Cs and 1-2-3s"

Attributes of objects
Real: {.real}, Imag: {a.imag}'.format(1+2j, a=3+4j) "Real: 1.0, Imag: 4.0"

(Note: automatic and numbered fields cannot mix; there are no programmatic issues with other ways (e.g. named))

Using format listing attributes of objects with inline functions:
String Example:
Item: {0}, Data type: {1}, Length: {2}".format("Walnut", type("Walnut").__name__, len("Walnut"))

Output: "Item: Walnut, Data type: str, Length: 6"
List Example:
Item: {0}, Data type: {1}, Length: {2}".format(lst := ["Apple", "Banana", "Cherry"],type(lst).__name__, len(lst))

Output: "Item: ['Apple', 'Banana', 'Cherry'], Data type: list, Length: 3"
Specific list element example
Item: {0}, Data type: {1}, Length: {2}".format(item := lst[2],type(item).__name__,len(item))

Output: "Item: Cherry, Data type: str, Length: 6"
Dictionary Example:
Item: {0}, Data type: {1}, Length: {2}".format(dct := {'Name': 'Alice', 'Age': 30, 'City': 'London'},type(dct).__name__,len(dct))

Output: "Item: {'Name': 'Alice', 'Age': 30, 'City': 'London'}, Data type: dict, Length: 3"
Specific dictionary value example
Item: {0}, Data type: {1}, Length: {2}".format(value := dct['City'],type(value).__name__,len(value))

Output: "Item: London, Data type: str, Length: 6"

External variable definitions v.s. inline definitions
Using print(sentence) for the output, we get this for both of the examples below: "In 2005, Akira Haraguchi recited the number pi to
112 digits during a Pi Day celebration that also featured puzzles."
External variables:
dict_data = {"digits": 112}
str_data = "Akira Haraguchi"
int_data = 2005
list_data = ["Pi Day celebration", "puzzles"]

Using str.format() to format the sentence
sentence = "In {0}, {1} recited the number pi to {2[digits]} digits during a {3[0]} that also featured {3[1]}.".format(
 int_data, str_data, dict_data, list_data
)
Inline definitions:
sentence = "In {0}, {1} recited the number pi to {2[digits]} digits during a {3[0]} that also featured {3[1]}.".format(
 2005, "Akira Haraguchi", {"digits": 112}, ["Pi Day celebration", "puzzles"]
)

Value Conversion
!r for repr(): Converts the value to its repr() representation, typically for debugging.
value1 = "Hello\tWorld"
print("Normal: {}".format(value1)) # Hello World (tab invisible)
print("Repr: {!r}".format(value1)) # 'Hello\tWorld' (tab revealed)

value2 = " " # Four spaces
print("Normal: {}".format(value2)) # (Looks blank)
print("Repr: {!r}".format(value2)) # ' ' (Shows spaces explicitly)

!a for ascii(): Converts the value using ascii(), escaping non-ASCII characters.
value1 = "Hello, 世界!" # Includes non-ASCII characters
print("Normal: {}".format(value1)) # Hello, 世界!
print("ASCII: {!a}".format(value1)) # 'Hello, \u4e16\u754c!'

value2 = "Café" # Includes a non-ASCII accented character
print("Normal: {}".format(value2)) # Café
print("ASCII: {!a}".format(value2)) # 'Caf\u00e9'

!s for str(): Is primarily useful when an object has a __repr__() but no __str__(), or when seeking clues in debugging.

Value Formatting
{[selector][conversion]:[format_specifier]}.format(value)
Format Specifier Options:

Fill and Alignment:
{: <10}.format('left') # Left-aligned, padded
{:^10}.format('center') # Center-aligned
{:*>10}.format('right') # Right-aligned, padded with '*'

Sign: Show signs for numbers (+, -, or space for positive).
{:+}.format(42) # +42
{: }.format(-42) # -42

Width and Precision:
{:8.2f}.format(3.14159) # Width 8, 2 decimal places

Comma for Thousands:
{:,}.format(1234567) # 1,234,567

Type: Control numeric or string types:
{:b}.format(42) # Binary (101010)
{:x}.format(255) # Hexadecimal (ff)
{:e}.format(1234) # Exponential (1.234e+03)

Functions
Functions are first-class objects- can be assigned to variables, passed as arguments, and returned from other functions.
Methods are functions bound to a class or an instance.
- Standalone Functions: Defined using the 'def' keyword.
- Instance Methods: Bound to an instance of a class; require 'self' as the first parameter.
- Class Methods: Bound to a class; require 'cls' as the first parameter. Declared with '@classmethod'.
- Static Methods: Need the class namespace to exist since they are defined inside, but are otherwise like instance methods.

Standalone functions are defined outside the class - independent and not tied to a class or instance

def standalone_function():
return "Standalone function called"

Instance method - default method type inside a class, bound to the instance
class Example:

def instance_method(self):
return f"Instance method called on {self}"

Class method (bound to the class, not an instance)
@classmethod
def class_method(cls):

return f"Class method called on {cls}"

Static methods have independent logic and are like standalone functions, but their function definition is in the class
@staticmethod

def static_method():
return "Static method called"

Usage and further notes
print(standalone_function()) # Outputs: Standalone function called

Using the Example class - making an instance to demonstrate the following method types
obj = Example()

Instance method (requires an instance to call it)
print(obj.instance_method()) # Outputs: Instance method called on <__main__.Example object at 0x...>
Automatically receives the instance (self) as its first argument.
Can access instance-specific data or call other instance methods

Class method (typically called on the class, but can also be called on an instance)
print(Example.class_method()) # Outputs: Class method called on <class '__main__.Example'>
print(obj.class_method()) # Outputs: Class method called on <class '__main__.Example'>
Automatically receives the class (cls) as its first argument.
Often for a method to operate on the class itself (to create alternate constructors, modifying class attributes)

Static method (can be called on from both the instance and the class)
print(obj.static_method()) # Outputs (from instance): Static method called
print(Example.static_method()) # Outputs (from class): Static method called
Does not receive self or cls. It's basically a standalone function but the class must exist for it to be defined

[Static and class methods use @classmethod and@staticmethod when they are declared- These are examples of what are called
decorators which are very useful and have their own section later.]

Local Functions
Local functions are functions defined within another function.
 - recreated with each execution of the enclosing function, resulting in unique objects.
 - enclosing scope includes the parameters and local variables of the enclosing function.
 - useful for encapsulating logic that doesn't need to be accessed outside the enclosing function.

def outer_function():
def inner_function():

return "Hello from inner_function!"
return inner_function

func1 = outer_function()
func2 = outer_function()
print(func1 is func2) # False

Higher-order functions
Recall that functions are first class objects meaning they can be assigned to variables, passed as arguments, and returned by
other functions. A higher-order function either takes a function as an argument or returns one.
Examples: map(), filter(), reduce().

def square(x):
return x * x

print(list(map(square, [1, 2, 3]))) # Output: [1, 4, 9]

Iterators
An iterator is an object that represents a stream of data. It implements the __iter__() and __next__() methods.

__iter__(): Returns the iterator object itself.
__next__(): Returns the next value in the sequence or raises a StopIteration exception when the sequence ends.

Using iter() on iterable containers (like lists, tuples, dictionaries) you can get an iterator object.
numbers = [1, 2, 3]
iterator = iter(numbers)
print(next(iterator)) # outputs 1
print(next(iterator)) # outputs 2

You can define your own iterator by implementing the __iter__() and __next__() methods.
class Countdown:

def __init__(self, start):
self.current = start

def __iter__(self):
return self

def __next__(self):
if self.current <= 0:
raise StopIteration
self.current -= 1
return self.current + 1

for num in Countdown(5):
print(num) # Outputs: 5, 4, 3, 2, 1

Use Cases:
Efficient looping through large datasets without loading all data into memory.
Lazy evaluation in scenarios where data generation is costly.

Recursive functions
Base case: Prevents infinite recursion by defining a condition where the function stops calling itself.
Recursive step: Progresses towards the base case, reducing the problem size at each step.

def factorial(n: int) -> int:
"""Computes factorial using recursion."""
if n == 0: # Base case
return 1

 return n * factorial(n - 1) # Recursive step
print(factorial(5)) # Outputs: 120

Encapsulation in Python
Python does not enforce strict access control (like private, protected, or public). Instead, it relies on conventions:
Single underscore (_varname): Indicates a variable or method is intended for internal use only but remains accessible.
Double underscore (__varname): Triggers name-mangling to make the variable harder to access from outside its class.

 - Avoid using global variables as they make debugging and maintaining the code harder.
 - Prefer passing values as function arguments and returning results instead of modifying external state.

Mutable default arguments in functions
Problem: Mutable default arguments can lead to unexpected behavior:

def add_to_list(value, my_list=[]):
my_list.append(value)
return my_list

add_to_list(1) # [1]
add_to_list(2) # [1, 2] (unintended)

Solution: Use None as the default value and initialize inside the function:
def add_to_list(value, my_list=None):

if my_list is None:
my_list = []

my_list.append(value)
return my_list

Extended formal argument syntax
Variable-length arguments:

def func(a, *args, **kwargs):
print(a, args, kwargs)

func(1, 2, 3, key="value") # Output: 1 (2, 3) {'key': 'value'}

Keyword-only arguments:
def func(a, *, b):

print(a, b)
func(1, b=2)

Default argument values:
def greet(name="World"):

return f"Hello, {name}!"
print(greet()) # Hello, World
print(greet("Alice")) # Hello, Alice

Positional-only parameters: parameters behind the "/" must be passed by position- not with keywords
def add(x, y, /, z):

return x + y + z
add(1, 2, z=3) # Valid
add(x=1, y=2, z=3) # Error: 'x' and 'y' are positional-only

The packages mypy and pydantic (both available through pip) can provide more explanatory type errors. Rather than simply
"Type mismatch", it would specify "Argument 2 to 'add' has incompatible type 'str'; expected 'int' "

Error Handling in Functions
Using try/except: Catch specific exceptions to handle errors gracefully.

def read_file(filepath: str) -> str:
try:

with open(filepath, 'r') as file:
return file.read()

except FileNotFoundError:
return "File not found."

Raising exceptions when function inputs are invalid or an operation cannot be performed.
def square_root(x: float) -> float:

if x < 0:
raise ValueError("Cannot compute square root of a negative number.")

return x ** 0.5

Function introspection and performance
dir(): Lists attributes and methods of an object.

def sample_func():
pass

print(dir(sample_func)) # Lists methods like __call__, __doc__, etc.

help(): Provides docstrings embedded in objects
help(sample_func)

inspect(): examine functions in depth
import inspect
def sample_func(a, b=10):

return a + b

print(inspect.signature(sample_func)) # (a, b=10)
print(inspect.getsource(sample_func)) # Source code of the function

timeit(): to measure function execution time
import timeit
def slow_function():

result = 0
for i in range(1000):

result += i
return result

print(timeit.timeit(slow_function, number=1000))

Custom function attributes, allow storing metadata, configurations, or state
def sample_function():
 pass

sample_function.author = "Alice"
sample_function.version = 1.0
sample_function.default_value = 42
sample_function.saved_state = {"last_run": None}

above are default values

print(sample_function.author) # Outputs: Alice
print(sample_function.version) # Outputs: 1.0
print(sample_function.default_value) # Outputs: 100
print(sample_function.saved_state) # Outputs: {'last_run': '2023-11-03'}

Coroutines and Async
Coroutines, defined using async def, enable non-blocking operations, allowing tasks like I/O or network calls to run efficiently
without halting other processes

import asyncio
async def greet():
 print("Hello")
 await asyncio.sleep(1) # Non-blocking pause
 print("World")
asyncio.run(greet()) # Outputs: Hello (pauses), World

 - async marks a function as a coroutine.
 - await pauses execution until the awaited task completes.
 - Ideal for handling concurrent operations such as web requests or file I/O.

Dynamic Function Creation
Example 1: Using exec()
code = "def dynamic_func(x): return x * 2" # Define a function dynamically as a string
namespace = {} # Create a namespace dictionary to store the function
exec(code, namespace) # Execute the code string in the given namespace
dynamic_func = namespace["dynamic_func"] # Retrieve the dynamically created function from the namespace

Call the function with a value for x
result = dynamic_func(5) # Here, x is 5
print(result) # Outputs: 10

 - String code definition defines a function, dynamic_func, which multiplies its argument x by 2.
 - The namespace dictionary acts as a container where exec() will place the dynamically created dynamic_func.
 - Execution: exec(code, namespace) evaluates the string code and stores the resulting dynamic_func in the namespace.
 - The namespace["dynamic_func"] retrieves the dynamic_func function object from the namespace.
 - Calling the function: dynamic_func(5) executes the function, passing 5 as x. The result, 5 * 2 = 10, is stored in result.

Example 2: Using types.FunctionType
import types
func_code = """ # Define a function body as a string
def dynamic_func(x):
 return x * 3
"""
code_obj = compile(func_code, "<string>", "exec") # Compile the function code into a code object
namespace = {} # Create a namespace to store the function
exec(code_obj, namespace) # Execute the compiled code within the namespace

dynamic_func = types.FunctionType(# Create a function using types.FunctionType explicitly
code=namespace["dynamic_func"].__code__, # Function code object
globals=namespace, # Globals for the function
name="dynamic_func" # Optional: explicitly set the function's name
)

result = dynamic_func(4) # Call the function
print(result) # Outputs: 12

Explanation of Code
 - types.FunctionType: Creates a function from a code object and a namespace (for global variables).
 Offers explicit control over the construction of the function object.
 - compile(): Converts a string of Python code into a code object, which can be executed or used to create a function.
 - exec(): Executes the code object in the specified namespace.
 - This method is more structured and allows finer control than directly using exec() on raw strings.

Best Practices for Function Design
 - Small, focused functions- should perform a single, well-defined task.

def calculate_area(length: float, width: float) -> float:
return length * width

 - Typing and annotations
Improve code readability and allow static type checkers to identify type errors.
Available in the typing module.

from typing import List, Tuple
def get_coordinates() -> Tuple[float, float]:

return 40.7128, -74.0060

def greet_all(names: List[str]) -> None:
for name in names:

print(f"Hello, {name}")

 - Documenting functions: use docstrings
def divide(a: float, b: float) -> float:
"""
Divides two numbers: a (float) numerator, and b (float) denominator
Returns: (float) result of division
"""
if b == 0:

raise ValueError("Denominator cannot be zero.")
return a / b

Classes

Defining a Class
class Shape:
 ### Defining Attributes and Methods
 def __init__(self, color="black"):
 """Initializer for the Shape class."""
 self.color = color # Public attribute
 self._dimensions = [] # Protected attribute to hold dimensions

 def add_dimension(self, dimension): # Adds a dimension to the shape (example of instance method)
 self._dimensions.append(dimension)

 def __str__(self): # Operator Overloading: Customize how the object is printed."""
 return f"Shape(color={self.color}, dimensions={self._dimensions})"

 @staticmethod
 def describe(): # Static Method: Does not depend on class or instance state."""
 return "Shapes are objects with geometrical properties."

 @classmethod
 def default_shape(cls): # Class Method: Accesses the class itself."""
 return cls(color="blue")

 @property
 def dimensions(self): #Getter for dimensions."""
 return self._dimensions

 @dimensions.setter
 def dimensions(self, value): # Setter for dimensions with validation."""
 if not isinstance(value, list):
 raise ValueError("Dimensions must be a list.")
 self._dimensions = value

Creating an Instance
shape1 = Shape(color="red")
shape1.add_dimension(5)
shape1.add_dimension(10)
print(shape1)

Using Instance and Class Methods
print(Shape.describe()) # Call to static method
default_shape = Shape.default_shape() # Call to class method
print(default_shape)

Encapsulation via Public/Private Attributes and Controlled Access
print("Dimensions (getter):", shape1.dimensions)
shape1.dimensions = [15, 20] # Using the setter
print("Updated dimensions:", shape1.dimensions)

Inheritance and Polymorphism
class Circle(Shape): # Circle inherits from Shape
 def __init__(self, radius, color="black"): # __init__ being the constructor
 super().__init__(color) # super() means child class is to use this function as defined in parent class
 self.radius = radius

 def area(self): #Polymorphic method
 from math import pi
 return pi * self.radius**2

 def __str__(self): # Override parent class's string representation
 return f"Circle(color={self.color}, radius={self.radius})"

Create and use a child class
circle = Circle(radius=7, color="green")
print(circle)
print(f"Circle area: {circle.area()}")

Demonstrating polymorphism
shapes = [shape1, default_shape, circle]
for shape in shapes:
 print(shape) # __str__ is polymorphic across different shapes

Key Features and explanations
Defining and Using Classes:

 - The Shape class is a foundational blueprint with attributes (color, _dimensions) and methods
Attributes and Methods:

 - Attributes: color is public, _dimensions is protected (underscored by convention).
 - Methods include:

Instance Method: add_dimension modifies specific instance data
Static Method: describe gives info about the class concept without accessing instance or class data
Class Method: default_shape creates a predefined Shape instance

Operator overloading and polymorphism:
 - __str__ is overridden to customize behavior of print() and string representations for Shape and Circle instances.
 - Circle overrides the __str__ method to provide its custom string representation.
 - The program treats different objects (Shape and Circle) uniformly in a loop. Each object calls its version of the __str__

method, depending on its class:
shapes = [shape1, default_shape, circle]
for shape in shapes:
 print(shape) # Calls the appropriate __str__ method

Encapsulation via Public/Private Attributes and Controlled Access:
 - The _dimensions attribute is protected (conventionally indicated with an underscore), discouraging direct access.
 - The @property decorator is a controlled way to access with getter (dimensions) and setter (dimensions.setter)

Function Overriding and Overloading in Python
While overriding is supported in Python, overloading works differently compared to languages like Java or C++. Here's an
explanation:

Function Overriding
Function overriding occurs when a subclass provides a specific implementation of a method that is already defined in its parent
class. The subclass's version overrides the parent class's version.
The method name and signature in the subclass must match the parent class's method.
The overridden method in the subclass will be invoked when called on an instance of the subclass.

class Parent:
 def greet(self):
 return "Hello from Parent!"

class Child(Parent):
 def greet(self):
 return "Hello from Child!"

obj = Child()
print(obj.greet()) # Outputs: "Hello from Child!"

Function Overloading
Function overloading allows multiple methods with the same name but different parameters (signature). Python does not natively
support function overloading. However, this can be achieved using default arguments or *args and **kwargs.
Python uses the latest defined method if multiple methods share the same name.
Functionality similar to overloading can be implemented manually by checking argument types.

Simulating Overloading:
class Calculator:
 def add(self, *args):
 if len(args) == 2:
 return args[0] + args[1]
 elif len(args) == 3:
 return args[0] + args[1] + args[2]
 else:
 raise ValueError("Unsupported number of arguments")

calc = Calculator()
print(calc.add(1, 2)) # Outputs: 3
print(calc.add(1, 2, 3)) # Outputs: 6

Differences between Overriding and Overloading

 Overriding Overloading
Definition Redefines a method in a subclass. Allows multiple methods with same name, different arguments.
Scope Happens in inheritance (parent-child). Happens in the same class or module.
Support in Python Fully supported. Not natively supported; simulated with argument handling.
Execution Depends on object type (runtime). Depends on argument count or type (design time).

Superclasses and the super() function
A superclass (or parent class) defines attributes and methods that can be inherited by subclasses
The super() function allows a subclass to manage inheritance of methods and attributes
It helps to not need to repeat parent class names over and over again
If you override/overload a function in your subclass, you can use super().method_name() to invoke the original method
Generally super() helps traversing the class hierarchy based on the Method Resolution Order (MRO)
(the MRO determines the order in which classes are searched for methods or attributes)

class Animal:
def sound(self):

return "Some sound"
class Dog(Animal):

def sound(self):
return super().sound() + " and a bark"

print(Dog().sound()) # Output: Some sound and a bark

Simplified Inheritance Management:
The super() function allows a subclass to call methods and access attributes from its superclass without explicitly naming it.

class Parent:

def greet(self):
return "Hello from Parent"

class Child(Parent):
def greet(self):

return super().greet() + " and Child"
print(Child().greet()) # Outputs: Hello from Parent and Child

Method Resolution Order (MRO):
super() uses the MRO to determine the order in which classes are searched for methods and attributes. This is particularly useful
in multiple inheritance scenarios.

class A:
def process(self):
return "A"

class B(A):
def process(self):
return super().process() + " B"

class C(B):
def process(self):

return super().process() + " C"
 print(C().process()) # Outputs: A B C

Metaclasses
Metaclasses are "classes of classes," defining how classes themselves behave. They control class creation and customization at
the metaprogramming level.

 - Defining Custom Class Behavior:
By overriding methods like __new__ or __init__, metaclasses can modify or enforce rules for class creation.

class Meta(type):
def __new__(cls, name, bases, dct):

dct["greet"] = lambda self: f"Hello from {name}"
return super().__new__(cls, name, bases, dct)

class CustomClass(metaclass=Meta):
pass

obj = CustomClass()
print(obj.greet()) # Outputs: Hello from CustomClass

 - Common Use Cases:
- Enforcing constraints on class definitions.
- Injecting methods or attributes into classes.
- Creating frameworks or APIs requiring specialized behavior.

Example: subclassing immutable types
 - Metaclasses are often used for creating specialized types, such as subclassing immutable types like tuples.

class SortedTuple(tuple):
def __new__(cls, iterable):

return super().__new__(cls, sorted(iterable))

sorted_tuple = SortedTuple([3, 1, 2])
print(sorted_tuple) # Outputs: (1, 2, 3)

Example: Enforcing attribute naming rules with a metaclass
 - Ensure that all attributes of a class must be uppercase, raising an error if any lowercase attribute is defined.

class UppercaseAttributesMeta(type):
def __new__(cls, name, bases, dct):

for key in dct:
if not key.isupper() and not key.startswith("__"):

raise ValueError(f"Attribute '{key}' is not uppercase in class '{name}'.")
 return super().__new__(cls, name, bases, dct)

Using the metaclass to enforce uppercase attribute names
class MyClass(metaclass=UppercaseAttributesMeta):

ATTRIBUTE_1 = "value1"
ATTRIBUTE_2 = "value2"

This will raise an error because the attribute 'attribute_3' is not uppercase
try:

class InvalidClass(metaclass=UppercaseAttributesMeta):
attribute_3 = "value3"

except ValueError as e:
print(e) # Outputs: Attribute 'attribute_3' is not uppercase in class 'InvalidClass'

 - The UppercaseAttributesMeta metaclass checks all attributes defined in the class dictionary (dct).
 - It raises a ValueError if any attribute name is not fully uppercase (excluding special names starting with __).
 - This ensures that classes using this metaclass adhere to a specific naming convention, which can be useful in codebases
requiring strict attribute naming rules.

LEGB: Understanding Python's Scope Resolution
When Python encounters a variable name, it searches for the variable's definition in the following order:

- Local Scope: The innermost function or block where the variable is defined.
- Enclosing Scope (aka nonlocal): The scope of any enclosing function or lambda, excluding the global scope.
- Global Scope: The top-level scope of the module where the code is written.
- Built-in Scope: The pre-defined names in Python, such as print, len, etc.

If the variable is then still not found, it raises a NameError.

Previously the unrelated Method Resolution Order (MRO) was mentioned, determining the lookup order for methods and
attributes in class hierarchy. LEGB instead governs how Python resolves variables or functions based on their scope and visibility.

Detailed Explanation of Each Scope
x = 100 # Global scope
def outer_function():

x = 200 # Local scope of outer_function

def inner_function1():
x = 300 # Local scope of inner_function1
return x # Refers to 'x' in the local scope of inner_function1

def inner_function2():
x = 60 # Local scope of inner_function2
return x # Refers to 'x' in the local scope of inner_function2

return inner_function1(), inner_function2() # Calling both functions in the enclosing scope
print(outer_function()) # Output: (300, 60)
print(x) # Output: 200 (Global 'x' is unchanged)

Details:
 - Global x = 100: The x in the global scope remains unaffected.

 - Inside outer_function(), there's a local x = 200. However, this x isn't used in inner_function1() or inner_function2() because both
functions define their own local x.
 - Inside inner_function1(), there is local x = 300; return x is the output of inner_function1()
 - Inside inner_function2(), there is local x = 60; return x is the output of inner_function2()
When outer_function() is called, it runs inner_function1() and inner_function2(), returns a tuple of the two values: (300, 60)

Enclosing gets a bit tricky at first since it is perspective looking out from what is local.
Consider 2 people living in a house with thier own locked rooms and a common area- you have access to the common areas in
the (enclosing) house and your room (local) but no access to your roommate's room.

Inside of inner_function1, the enclosing scope is outer_function()'s contents. Even though that includes inner_function2, it does
NOT include it's contents. From the view, im enclosed by outer_function(), not inner_function2()
Let's say we get rid of all definitions of x except for outer_function's x=200.
From inside one of the inner_functions, a call for x won't find a local, so it moves onto enclosing, and then finds x=200.
This wouldn't happen if it was only in the other inner_function, since it is STRICTLY refering to the level above its own block.

If it wasn't defined anywhere except right outside of outer_function(), it moves to global scope and finds x=100.
Consider global up to the top-most levels accessible to any function or block when a matching local or enclosing isn't found.

Built-in Scope: Contains Python's built-in functions and constants.
Examples include len, range, and print.

Built-in Scope Example:
def builtin_example():
 print(len("Python")) # Accesses the built-in len() function
builtin_example() # Output: 6

Lambdas
A lambda function is a small, anonymous function defined using the lambda keyword.
Primarily used for short-lived, single-expression functions where defining a full function is unnecessary.
Ideal for short, "throwaway" functions used within functional programming or sorting and filtering .

lambda arguments: expression

Basic syntax:
The arguments are inputs to the lambda function, the expression is evaluated and returned as the output.

add = lambda x, y: x + y
print(add(2, 3)) # Outputs: 5

Use cases
Inline function definition:
Lambdas are useful for simple functions defined on-the-fly.

square = lambda x: x ** 2
print(square(4)) # Outputs: 16

Lambdas with Multiple Arguments:
Lambdas can accept multiple arguments for concise operations.

mul = lambda a, b: a * b
result = mul(5, 3)
print(result) # Outputs: 15

Lambda Function with No Arguments:
Lambdas can be defined without arguments, often used for returning constants.

six = lambda: 6
result = six()
print(result) # Outputs: 6

Sorting with a key function:
Lambdas can act as the key argument in sorting operations.

people = [{'name': 'Alice', 'age': 25}, {'name': 'Bob', 'age': 30}]
sorted_people = sorted(people, key=lambda x: x['age'])
print(sorted_people) # Outputs: [{'name': 'Alice', 'age': 25}, {'name': 'Bob', 'age': 30}]

Higher-order functions:
Lambdas work seamlessly with functional programming tools like map, filter, and reduce.

Using map: Applies a function to all items in an iterable.
nums = [1, 2, 3, 4]
squared = list(map(lambda x: x ** 2, nums))
print(squared) # Outputs: [1, 4, 9, 16]

Using filter: Filters elements from an iterable based on a condition.
nums = [1, 2, 3, 4]
evens = list(filter(lambda x: x % 2 == 0, nums))
print(evens) # Outputs: [2, 4]

Using reduce: Reduces an iterable to a single value by applying a function cumulatively
from functools import reduce
nums = [1, 2, 3, 4]
total = reduce(lambda x, y: x + y, nums)
print(total) # Outputs: 10

Recursive expressions with lambdas:
factorial = lambda n: n * factorial(n-1) if n > 1 else 1
print(factorial(5)) # Output: 120

Returning a Lambda Function from Another Function:
Functions can return lambdas, enabling dynamic behavior.

import math
def myfunc(n):
return lambda a: math.pow(a, n)

square = myfunc(2)
cube = myfunc(3)
squareroot = myfunc(0.5)
print(square(3)) # Outputs: 9.0
print(cube(3)) # Outputs: 27.0
print(squareroot(3)) # Outputs: 1.7320508075688772

Dynamically create multiple lambda functions:
funcs = [lambda x, n=n: x + n for n in range(5)]
for func in funcs:
print(func(10)) # Outputs: 10, 11, 12, 13, 14

Combining lambdas with closures:
Lambdas can capture and use variables from their enclosing scope, creating powerful combinations with closures.

def multiplier(n):
return lambda x: x * n

doubler = multiplier(2)
print(doubler(5)) # Outputs: 10

Limitations:
Lambdas are limited to a single expression, cannot include statements such as if, while, or for.

Conditional logic workaround using ternary operators:
max_val = lambda x, y: x if x > y else y
print(max_val(3, 5)) # Outputs: 5

Conditional logic workaround 2:
categorize = lambda x: 'even' if x % 2 == 0 else 'odd'
print(categorize(4)) # Outputs: 'even'

Common mistakes
 - Avoid deeply nested or complex lambdas that reduce maintainability
 - Ensure readability and reserve complex logic for named functions
 - It's harder to identify lambdas in error messages or stack traces, without a name unless assigned to a variable

 - Overusing lambdas
Instead of making this: [result = (lambda x: (lambda y: x + y)(5))(10)]
Do this instead:

def add_five(x):
return x + 5

print(add_five(10)) # Outputs: 15

 - Improper use in loops:
A common mistake:

funcs = [lambda x: x + i for i in range(3)]
for func in funcs:

print(func(10)) # Outputs: 12, 12, 12

The correct approach:
funcs = [lambda x, i=i: x + i for i in range(3)]
for func in funcs:

print(func(10)) # Outputs: 10, 11, 12

Closures
A function that captures, retains access to variables from its enclosing scope- even if scope is no longer active- enabling
encapsulation and dynamic behavior. To be called a closure, the code block must have a nested function that refers to a value
defined in the enclosing function, which then returns the nested function

Basic syntax:
def outer_function(msg):
 def inner_function():
 print(msg)
 return inner_function

closure_func = outer_function("Hello, World!")
closure_func() # Outputs: Hello, World!

Practical use cases for closures
Closures can encapsulate variables and logic, providing a lightweight alternative to objects for maintaining state.

Maintaining state across function calls:
def counter():
 count = 0
 def increment():
 nonlocal count
 count += 1
 return count
 return increment

incrementer = counter()
print(incrementer()) # Outputs: 1
print(incrementer()) # Outputs: 2

Dynamic function creation (closure version of a 'function factory'):
def multiplier(factor):
 def multiply_by(x): # A simplified version is shown later in the section on lambdas: [return lambda x: x * n]
 return x * factor
 return multiply_by

double = multiplier(2)
triple = multiplier(3)
print(double(5)) # Outputs: 10
print(triple(5)) # Outputs: 15

Decorators often leverage closures to capture and retain context, such as parameters or state, allowing them to dynamically
modify or extend function behavior.

def repeat(n):
 def decorator(func):
 def wrapper(*args, **kwargs):
 for _ in range(n):
 func(*args, **kwargs)
 return wrapper
 return decorator

@repeat(3)
def greet():
 print("Hello!")

greet()

Decorators
Decorators are callable objects (function, class, or instance) that takes another callable as input and returns a new callable, often
wrapping or modifying its behavior.
They often rely on closures, which enable them to dynamically change or extend function behavior
 - Increase clarity, maintainability, and reducing complexity.
 - Manage function calls and instances; for classes, enable customizing object behavior or adding stateful logic
 - Augmenting functionality, such as logging, validation, or data transformation
 - Proxy calls to intercept, monitor, or modify behavior dynamically

Basic syntax:
message = "This is a message."
def decorator(func):
 def modify_message():
 return func().upper()
 return modify_message

def display_message():
 return message # Undecorated function

@decorator
def decorated_display_message():
 return message # Decorated function

print(display_message()) # Undecorated output, # This is a message
print(decorated_display_message()) # Decorated output, # Decorated output

Prepending the function definition with the @ symbol (as above) to automatically apply the decorator is most common. However,
decorators can also be applied manually in the form decorator_name(function_name)() if needed.

Built-in decorators:
@staticmethod and @classmethod are built-in decorators provided by Python for working with methods inside a class. These
decorators do not involve replacing the function with an instance of a class, unlike when you use a custom class as a decorator.
For the property built-in decorator, (a function) there is a small section reserved for it after this section.

@staticmethod: Defines a method that doesn’t rely on instance or class-level data.
class Utility:
 @staticmethod
 def add(a, b):
 return a + b

@classmethod: Operates at the class level, taking 'cls' as the first parameter
 value = 42
 @classmethod
 def get_value(cls):
 return cls.value

@property: Allows a method to be accessed as an attribute.

Practical decorators:
Logging:

def log(func):
 def wrapper(*args, **kwargs):
 print(f"Calling {func.__name__} with {args} and {kwargs}")
 return func(*args, **kwargs)
 return wrapper

@log
def add(a, b):
 return a + b

print(add(3, 4))

Parameter validation:
def smart_divide(func):
 def inner(a, b):
 if b == 0:
 print("Whoops! cannot divide")
 return
 return func(a, b)
 return inner
@smart_divide

 def divide(a, b): return a / b
 divide(2, 0) # Output: Whoops! cannot divide

Timing:
import time

def timer(func):
 def wrapper(*args, **kwargs):
 start = time.time()
 result = func(*args, **kwargs)
 end = time.time()
 print(f"{func.__name__} took {end - start:.4f} seconds")
 return result
 return wrapper

@timer
def slow_function():
 time.sleep(2)
 print("Finished!")
slow_function()

Classes as decorators
Decorating a function with a class turns the function into an instance of the class.
The decorator class receives the function as an argument to its constructor (__init__) and must implement a __call__ method to
enable callable behavior.

class CallCount:
 def __init__(self, f):
 self.f = f
 self.count = 0

 def __call__(self, *args, **kwargs):
 self.count += 1
 return self.f(*args, **kwargs)

@CallCount
def hello(name):
 print(f"Hello, {name}!")

hello("Ike") # Hello, Ike
hello("Selma") # Hello, Selma
print(hello.count) # Output: 2

Instances as Decorators
Instances of classes can act as decorators, enabling dynamic control over their behavior.
Example: tracing calls, allows toggling its functionality (self.enabled),

class Trace:
 def __init__(self):
 self.enabled = True

 def __call__(self, f):
 def wrap(*args, **kwargs):
 if self.enabled:
 print(f"Calling {f.__name__}")
 return f(*args, **kwargs)
 return wrap

tracer = Trace()

@tracer
def rotate_list(l):
 return l[1:] + [l[0]]

l = [1, 2, 3]
print(rotate_list(l)) # Calling rotate_list; Output: [2, 3, 1]
tracer.enabled = False
print(rotate_list(l)) # No call trace; Output: [3, 1, 2]

Functions as Decorators
Example: unicode escaping- ensures all return values have non-ASCII characters converted to escape sequences

def escape_unicode(f):
 def wrap(*args, **kwargs): # wrap() closure retains access to 'f' even after escape_unicode returns
 x = f(*args, **kwargs)
 return ascii(x)
 return wrap

@escape_unicode
def a_city():
 return 'São Paulo'

print(a_city()) # Output: 'S\\xe3o Paulo'

Functions decorating a class
Decorating classes with a function can enforce design patterns like singletons, dynamically add attributes, or standardize behavior
across multiple classes without altering their definitions.

A singleton ensures that only one instance of a class is created, and it provides a global point of access to that instance. This
example ensures the same instance is returned every time the class is called, thus behaving as a singleton.

def singleton(cls):
 instances = {} # Dictionary to store a single instance of the class
 def get_instance(*args, **kwargs):
 if cls not in instances:
 instances[cls] = cls(*args, **kwargs)
 return instances[cls]
 return get_instance

@singleton
class DatabaseConnection:
 pass

db1 = DatabaseConnection()
db2 = DatabaseConnection()
print(db1 is db2) # Outputs: True

Chaining multiple decorators:
When stacking decorators, the order of execution is bottom to top (inner to outer).
@decorator1
@decorator2
@decorator3
def some_function():
 pass
Equivalent to: some_function = decorator1(decorator2(decorator3(some_function)))

Preserving metadata using functools.wraps
Naive decorators can overwrite original metadata (function names, docstrings, etc) functools.wraps can preserve them.
import functools

def my_decorator(f):
 @functools.wraps(f)
 def wrap(*args, **kwargs):
 return f(*args, **kwargs)
 return wrap

Decorator factories
A decorator factory is a function that returns a decorator, enabling parameterized behavior.

Example: argument validation
def check_non_negative(index):
 def validator(f):
 def wrap(*args):
 if args[index] < 0:
 raise ValueError(f"Argument {index} must be non-negative")
 return f(*args)
 return wrap
 return validator

@check_non_negative(1)
def create_list(value, size):
 return [value] * size

print(create_list(1, 3)) # Output: [1, 1, 1]
create_list(1, -3) # Raises ValueError

check_non_negative is a factory that generates the actual decorator (validator).

Property() decorator and Descriptors
Descriptors and the @property decorator are features designed for managing attribute access and behavior. They overlap in
functionality, with both capable of controlling how attributes are accessed, modified, or deleted.
@property is ideal for simple, class-specific logic, while descriptors excel in reuse and state management. By understanding their
strengths, you can choose the best approach for your specific needs.

Comparison: @property vs. Descriptors
Feature @property Descriptors
Ease of Use Easy to implement and read. Requires understanding of __get__, __set__, __delete__.
Reusability Tied to a single class. Can be reused across multiple classes.
Granularity Inline getter, setter, and deleter. Separate methods, offering more control.
Stateful Logic No built-in state management. Can store state via additional attributes.

When to Use
Use @property when:

Attribute logic is class-specific.
You want a simple, inline syntax.

Use descriptors when:
Logic needs to be reused across classes.
Stateful or complex attribute management is required.

property() - @property
The @property decorator simplifies attribute management by wrapping methods to behave like attributes. This avoids breaking the
class interface when additional logic is needed for attribute access. Using propert() as a function rather than in it's decorator form
is an option, but not seen as often.
Advantages: Inline getter, setter, and deleter functionality, simple syntax, transparent usage for clients of the class.

Read-Only Attributes: Attributes that should be accessible but not modifiable
 class User:
 def __init__(self, username):
 self._username = username

 @property
 def username(self):
 return self._username

 user = User("JohnDoe")
 print(user.username) # Outputs: JohnDoe

Dynamic Computations: Attributes that compute values dynamically
import math
class Circle:
 def __init__(self, radius):
 self.radius = radius

 @property
 def area(self):
 return math.pi * (self.radius ** 2)

circle = Circle(5)
print(circle.area) # Outputs: 78.54

Getter Methods- Used to compute or access protected attributes
class Rectangle:
 def __init__(self, width, height):
 self._width = width
 self._height = height

 @property
 def area(self): # Compute area dynamically
 return self._width * self._height

Usage
r = Rectangle(3, 4)
print(r.area) # Outputs: 12

Controlled Updates (Setters): Validate or preprocess values during updates
class Square:
 def __init__(self, side):
 self._side = side

 @property
 def side(self):
 return self._side

 @side.setter
 def side(self, value):
 if value < 0:
 raise ValueError("Side must be non-negative")
 self._side = value

square = Square(4)
square.side = 6
print(square.side) # Outputs: 6

Deleter Methods- Enable controlled deletion of attributes
class Counter:
 def __init__(self):
 self._count = 0

 @property
 def count(self):
 return self._count

 @count.deleter
 def count(self):
 print("Deleting count")
 del self._count

Usage
c = Counter()
del c.count # Outputs: Deleting count

Descriptors
Descriptors provide a lower-level mechanism for controlling attribute behavior through special methods: __get__, __set__, and
__delete__

The labels "data descriptors" and "non-data descriptors" don't seem logical . They refer to control and priority over attributes rather
than whether they "handle data." Data Descriptors implement both __set__ and/or __delete__ along with __get__, so they define
how data is managed more than a "non-data descriptor" which simply retrieves data.
One topic which is beyond the basics below is that you can make custom descriptors that use your own class.

Data Descriptors (standard) - Implement both __get__ and __set__:
class DataDescriptor:
 def __get__(self, instance, owner):
 return instance._value

 def __set__(self, instance, value):
 instance._value = value

class MyClass:
 attribute = DataDescriptor()

Usage
obj = MyClass()
obj._value = 10
print(obj.attribute) # Outputs: 10

Non-Data Descriptor (standard) - Implement only __get__ (read-only behavior):
class NonDataDescriptor:
 def __get__(self, instance, owner):
 return "Read-only attribute"

class MyClass:
 attribute = NonDataDescriptor()

Usage
obj = MyClass()
print(obj.attribute) # Outputs: Read-only attribute

A "DeletionOnlyDescriptor" - (self-explanitory)
class DeletionOnlyDescriptor:
 def __delete__(self, instance):
 print(f"Deleting attribute for {instance}")

class MyClass:
 attribute = DeletionOnlyDescriptor()

Usage
obj = MyClass()
del obj.attribute # Outputs: Deleting attribute for <__main__.MyClass object at 0x...>

An All-in-One Data Descriptor - demonstrates the full lifecycle of managing an attribute, including deletions
class AllDataDescriptor:
 def __init__(self, default=None):
 self.default = default # Default value if no data is set for an instance
 self.data = {} # A dictionary to store instance-specific data

 def __get__(self, instance, owner):
 if instance is None:
 return self # Accessed via the class; returns the descriptor itself
 return self.data.get(instance, self.default) # Instance-specific or default

 def __set__(self, instance, value):
 self.data[instance] = value # Sets instance-specific data

 def __delete__(self, instance):
 if instance in self.data:
 print(f"Deleting value for {instance}")
 del self.data[instance] # Deletes instance-specific data
 else:
 raise AttributeError("Attribute does not exist or has not been set")

class MyClass:
 attribute = AllDataDescriptor(default="Default Value")

Usage
obj = MyClass()
print(obj.attribute) # Outputs: Default Value (uses default from __init__)
obj.attribute = "Custom Value"
print(obj.attribute) # Outputs: Custom Value (stored in self.data)
del obj.attribute # Deletes the instance-specific value
print(obj.attribute) # Outputs: Default Value (falls back to default)

__get__: Retrieves the stored value for the instance or returns a default value if none is set.
__set__: Stores the provided value in a dictionary, keyed by the instance.
__delete__: Deletes stored value for instance and handles attempts to delete non-existent attributes by raising an exception.

Advantages of Descriptors
- Reusable attribute logic across multiple classes.
- Fine-grained control over attribute behavior.
- Capability to manage state associated with attributes.
- Useful for advanced scenarios like metaprogramming or custom validation.

Combining @property and Descriptors
These two approaches can work together to provide both ease of use and reusability.
This hybrid approach ensures flexibility, allowing simple syntax while leveraging descriptor-like logic.

Example: Temperature Conversion

class Temperature:
 def __init__(self):
 self._celsius = 0

 @property
 def celsius(self):
 return self._celsius

 @celsius.setter
 def celsius(self, value):
 self._celsius = value

 @property
 def fahrenheit(self):
 return (self._celsius * 9/5) + 32

temp = Temperature()
temp.celsius = 25
print(temp.fahrenheit) # Outputs: 77.0

Using the functools.wraps @wraps decorator
When you decorate a function, the decorator replaces the original function with a wrapper, which by default loses important
metadata like __name__, __doc__, and annotations. This can hinder debugging, introspection, and docstrings.
The functools.wraps decorator ensures the wrapper function preserves the original function’s metadata, improving transparency
and compatibility with tools.

from functools import wraps
def my_decorator(func):
 @wraps(func)
 def wrapper(*args, **kwargs):
 print(f"Calling {func.__name__} with arguments {args}")
 return func(*args, **kwargs)
 return wrapper

@my_decorator
def say_hello(name: str) -> str: # Returns a greeting for the given name."""
 return f"Hello, {name}!"

Function retains original metadata
print(say_hello.__name__) # Output: say_hello
print(say_hello.__doc__) # Output: Returns a greeting for the given name.

Without @wraps, say_hello.__name__ would be wrapper, and __doc__ would be lost.
@wraps is a shortcut for functools.update_wrapper, which manually copies attributes like __name__, __doc__, and
__annotations__ from the original function to the wrapper.

from functools import update_wrapper
def my_decorator(func):
 def wrapper(*args, **kwargs):
 return func(*args, **kwargs)
 update_wrapper(wrapper, func)
 return wrapper

Built-in Functions for Classes

isinstance():
Checks if an object is an instance or a tuple of classes.

print(isinstance(5, int)) # True
print(isinstance("text", (int, str))) # True

issubclass():
Checks if a class is a subclass of another class.

class Animal: pass
class Dog(Animal): pass
print(issubclass(Dog, Animal)) # True

{has, get, set, del}attr():
These functions work with object attributes:
hasattr(): Checks if an object has an attribute.
getattr(): Retrieves the value of attribute (optional default).
setattr(): Sets an attribute on an object.
delattr(): Deletes an attribute from an object.

class Example:
 value = 42

obj = Example()
print(hasattr(obj, "value")) # True
print(getattr(obj, "value", "default")) # 42
setattr(obj, "new_attr", 100)
print(obj.new_attr) # 100
delattr(obj, "value")

dir():
Returns a list of attributes (methods, properties) of an object.

class Example:
 value = 42
print(dir(Example))
['__class__', '__delattr__', ..., 'value']

Built-in Functions for Functions

callable():
Checks if an object is callable (e.g., a function, method, or class with __call__ defined).

print(callable(len)) # True
print(callable(42)) # False

id():
Returns the memory address of an object. Useful for understanding object identity.
x = [1, 2, 3]
print(id(x)) # Memory address of x

type():
Returns the type of an object or creates a new type if used with additional arguments.
print(type(42)) # <class 'int'>

vars():
Returns the __dict__ attribute of an object, if it exists (a dictionary of attributes).
class Example:
 value = 42
obj = Example()
print(vars(obj)) # {}

Built-in Functions for Variable Management

globals():
Returns a dictionary of the global namespace.

x = 10
print(globals()) # Dictionary containing 'x'

locals():
Returns a dictionary of the local namespace.

def func():
 local_var = 5
 print(locals()) # {'local_var': 5}
func()

eval():
Evaluates a string expression within the current scope.

x = 5
print(eval("x + 3")) # 8

exec():
Executes dynamically created Python code.

code = "y = 10\nprint(y)"
exec(code) # Prints 10

compile():
Compiles a string into a code object for later execution.

code = compile("z = 15", "<string>", "exec")
exec(code)
print(z) # 15

hash():
Returns the hash value of an object.
print(hash("example")) # Hash value of the string

__Dunder__ Methods

For Classes

__init__(self, ...):
Initializes a new instance of a class.

class Example:
 def __init__(self, value):
 self.value = value
obj = Example(10)
print(obj.value) # 10

__new__(cls, ...):
Allocates and returns a new instance.

class Example:
 def __new__(cls):
 print("Creating instance")
 return super().__new__(cls)
obj = Example() # Prints "Creating instance"

__repr__(self):
Returns a string representation of object (used by repr()).

class Example:
 def __repr__(self):
 return "Example()"
print(repr(Example())) # Example()

__str__(self):
Returns readable representation (used by str() , print()).

class Example:
 def __str__(self):
 return "This is an example."
print(Example()) # This is an example.

__call__(self, *args, **kwargs):
Makes an instance callable like a function.

class Example:
 def __call__(self, x):
 return x * 2
obj = Example()
print(obj(5)) # 10

For Functions

__call__(self, *args, **kwargs):
Makes a custom object callable.

class CallableObject:
 def __call__(self, x):
 return x + 1
obj = CallableObject()
print(obj(5)) # 6

For Attribute Management

__getattr__(self, name):
Called when accessing an attribute that doesn’t exist.

class Example:
 def __getattr__(self, name):
 return f"{name} is not found!"
obj = Example()
print(obj.missing_attr) # missing_attr is not found!

__setattr__(self, name, value):
Customizes setting an attribute.

class Example:
 def __setattr__(self, name, value):
 print(f"Setting {name} to {value}")
 super().__setattr__(name, value)
obj = Example()
obj.attr = 10 # Setting attr to 10

__delattr__(self, name):
Customizes deleting an attribute.

class Example:
 def __delattr__(self, name):
 print(f"Deleting {name}")
 super().__delattr__(name)
obj = Example()
obj.attr = 10
del obj.attr # Deleting attr

For General Objects

__repr__(self):
Provides an unambiguous string representation of the object. Often required for debugging.

__str__(self):
Provides a human-readable representation of the object.

__len__(self):
Defines behavior for len(obj).

class Example:
 def __len__(self):
 return 5
print(len(Example())) # 5

__getitem__(self, key):
Enables indexing and slicing for objects.

class Example:
 def __getitem__(self, key):
 return key * 2
obj = Example()
print(obj[3]) # 6

__setitem__(self, key, value):
Enables setting values via indexing.

__delitem__(self, key):
Enables deleting items via indexing.

__enter__(self) and __exit__(self):
Defines behavior for context management (e.g., with statements).

class MyContext:
 def __enter__(self):
 print("Entering the context")
 return self # Optional, can return another object

 def __exit__(self, exc_type, exc_value, traceback):
 print("Exiting the context")

Using the context manager
with MyContext() as ctx:
 print("Inside the context")

Output: Entering the context
Inside the context
Exiting the context

Dataclasses module
Simplifies creation of data containers

Basic Data Class
from dataclasses import dataclass

@dataclass
class Point:
 x: int
 y: int

p = Point(10, 20)
print(p.x, p.y) # Outputs: 10 20

Default factory
from dataclasses import dataclass, field

@dataclass
class Inventory:
 items: list[str] = field(default_factory=list)

inv = Inventory()
inv.items.append("Sword")
print(inv.items) # Outputs: ['Sword']

Comparison methods
from dataclasses import dataclass

@dataclass(order=True)
class Task:
 priority: int
 name: str

t1 = Task(1, "Write Code")
t2 = Task(2, "Test Code")
print(t1 < t2) # Outputs: True

Attrs module
Enhances data class functionality with validation and more.

Basic usage:
from attrs import define, validators

@define
class Person:
 name: str
 age: int = validators.instance_of(int)

person = Person("Alice", 30)

Default values with factories:
from attrs import define, Factory

@define
class Inventory:
 items: list = Factory(list)

inv = Inventory()
inv.items.append("Potion")
print(inv.items) # Outputs: ['Potion']

Custom conversion:
from attrs import define, converters

@define
class Product:
 price: float = converters.optional(float) # Ensures input is converted to float

product = Product(price="19.99")
print(product.price) # Outputs: 19.99

Toolz module
Functional programming utilities.

Functional composition:
from toolz import compose

def double(x):
 return x * 2

def increment(x):
 return x + 1

double_then_increment = compose(increment, double)
print(double_then_increment(3)) # Outputs: 7

Groupby:
from toolz import groupby

data = [{"type": "fruit", "name": "apple"}, {"type": "fruit", "name": "banana"}, {"type": "vegetable", "name": "carrot"}]
grouped = groupby("type", data)
print(grouped)
Outputs: {'fruit': [{'type': 'fruit', 'name': 'apple'}, {'type': 'fruit', 'name': 'banana'}], 'vegetable': [{'type': 'vegetable', 'name': 'carrot'}]}

Sliding window:
from toolz import sliding_window

data = [1, 2, 3, 4, 5]
print(list(sliding_window(2, data)))
Outputs: [(1, 2), (2, 3), (3, 4), (4, 5)]

Partition:
from toolz import partition

data = [1, 2, 3, 4, 5, 6]
print(list(partition(2, data)))
Outputs: [(1, 2), (3, 4), (5, 6)]

functools
Module specializes in higher-order functions and optimizations, enabling more efficient code.

partial: pre-defines some arguments of a function, returning a
new callable with fixed values.

from functools import partial
def multiply(x, y):
 return x * y

double = partial(multiply, 2)
print(double(5)) # Outputs: 10

partialmethod: Similar to partial, but specifically for methods
in classes. It allows fixing certain arguments or keywords of
methods in a class.

from functools import partialmethod

class Greeter:
 def greet(self, greeting, name):
 return f"{greeting}, {name}!"

 say_hello = partialmethod(greet, "Hello")

g = Greeter()
print(g.say_hello("Alice")) # Hello, Alice!

singledispatch
Creates generic functions that can be specialized based on
argument types.

from functools import singledispatch

@singledispatch
def process(data):
 raise NotImplementedError("Unsupported type")

@process.register(str)
def _(data):
 return data.upper()

@process.register(int)
def _(data):
 return data * 10

print(process("hello")) # Outputs: HELLO
print(process(5)) # Outputs: 50

cmp_to_key: Converts an old-style comparison function
(cmp) into a key function for sorting.

from functools import cmp_to_key

def compare(a, b):
 return (a > b) - (a < b)

numbers = [3, 1, 4, 1, 5, 9]
sorted_numbers = sorted(numbers,
key=cmp_to_key(compare))
print(sorted_numbers) # [1, 1, 3, 4, 5, 9]

lru_cache: Implements memoization to cache results of
expensive or frequently called functions.

from functools import lru_cache
@lru_cache(maxsize=128)
def factorial(n):

return 1 if n == 0 else n * factorial(n - 1)
print(factorial(5)) # Outputs: 120

cached_property: Converts a method into a property whose
value is computed once and then cached for the lifetime of the
instance.

from functools import cached_property

class Circle:
 def __init__(self, radius):
 self.radius = radius

 @cached_property
 def area(self):
 print("Calculating area...")
 return 3.14159 * self.radius ** 2

c = Circle(5)
print(c.area) # Calculating area... \n 78.53975
print(c.area) # 78.53975 (cached, no recalculation)

reduce: successively applies a function to the elements of an
iterable, reducing it to a single value.

from functools import reduce

numbers = [1, 2, 3, 4]
product = reduce(lambda x, y: x * y, numbers)
print(product) # Outputs: 24

wraps: preserves the metadata of the original function when
wrapped in a decorator.

from functools import wraps

def decorator(func):
 @wraps(func)
 def wrapper(*args, **kwargs):
 print(f"Calling {func.__name__}")
 return func(*args, **kwargs)
 return wrapper

@decorator
def greet(name):
 return f"Hello, {name}!"

print(greet("Alice")) # Outputs: Calling greet\nHello, Alice!

Pydantic
pydantic combines type annotations with data validation, ensuring correctness in structured data.

Data models:
from pydantic import BaseModel

class Product(BaseModel):
 id: int
 name: str
 price: float

product = Product(id=1, name="Laptop", price=999.99)
print(product.dict()) # Outputs: {'id': 1, 'name': 'Laptop', 'price': 999.99}

Validation:
from pydantic import BaseModel, ValidationError
class User(BaseModel):
 username: str
 age: int
try:
 user = User(username="Alice", age="twenty")
except ValidationError as e:
 print(e)
 # Outputs: age\n value is not a valid integer (type=type_error.integer)

Custom validation:
from pydantic import BaseModel, validator

class User(BaseModel):
 username: str
 age: int

 @validator("age")
 def check_age(cls, value):
 if value < 18:
 raise ValueError("Age must be 18 or above.")
 return value

user = User(username="Bob", age=20) # Valid
user = User(username="Bob", age=16) # Raises validation error

Complex nested models:
from pydantic import BaseModel
user = User(username="Alice", email="alice@example.com", address={"street": "123 Main St", "city": "Townsville", "zipcode":
"12345"})
class Address(BaseModel):
 street: str
 city: str
 zipcode: str

class User(BaseModel):
 username: str
 email: str
 address: Address

print(user.dict()) # Outputs nested dictionary with validated data

Strict types:
from pydantic import BaseModel, StrictInt

class Config(BaseModel):
 setting: StrictInt # Only allows integers; floats are rejected

config = Config(setting=3.14) # Raises validation error
config = Config(setting=42)

